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There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease
outcome) with, for example, logistic regression. A marker is considered useful if it has a strong effect on risk. The
second evaluates classification performance by use of measures such as sensitivity, specificity, predictive values,
and receiver operating characteristic curves. There is controversy about which approach is more appropriate.
Moreover, the two approaches can give contradictory results on the same data. The authors present a new graphic,
the predictiveness curve, which complements the risk modeling approach. It assesses the usefulness of a risk
model when applied to the population. Although the predictiveness curve relates to classification performance
measures, it also displays essential information about risk that is not displayed by the receiver operating charac-
teristic curve. The authors propose that the predictiveness and classification performance of a marker, displayed
together in an integrated plot, provide a comprehensive and cohesive assessment of a risk marker or model.
The methods are demonstrated with data on prostate-specific antigen and risk factors from the Prostate Cancer

Prevention Trial, 1993—-2003.

biological markers; classification analysis; diagnostic tests, routine; epidemiologic methods; predictive value of
tests; prostate-specific antigen; risk assessment; risk model

Abbreviations: Cl, confidence interval; FPF, false positive fraction; PSA, prostate-specific antigen; ROC, receiver operating

characteristic; TPF, true positive fraction.

Biomarker development is a major focus of research in
cancer as well as in other diseases. We seek biomarkers for
many purposes, including risk assessment, screening, diag-
nosis, and prognosis. New molecular technologies, in par-
ticular, promise to provide biomarkers that can inform about
risk and help guide clinical decisions.

There are two basic statistical approaches for evaluating
such biomarkers. The first models the risk of disease (or
disease outcome) as a function of the biomarker(s) with,
for example, logistic (or Cox) regression. The value of
a marker is measured by its effect on risk conditional on
other predictors. This is adequate in etiologic research but

does not address the capacity of the marker to correctly
classify or predict risk in the population. The second
summarizes marker performance with classification perfor-
mance measures, such as sensitivity and specificity, predic-
tive values, and receiver operating characteristic (ROC)
curves. There is controversy about which approach is more
appropriate. Moons and Harrell (1) argue in favor of risk
models, since ultimately the patient wants to know his risk
given his biomarker measurement. On the other hand, Pepe
et al. (2) emphasize that the public health value of a marker
lies in the fraction of diseased (or destined to be diseased)
subjects detected, that is, sensitivity, and the fraction of
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nondiseased subjects falsely identified as diseased, that is,
1 — specificity.

Both statistical approaches are frequently applied, often
to the same data. However, the relation between them is
unclear. Of particular concern, the two approaches fre-
quently yield apparently contradictory results. A marker that
is strongly related to risk may be a poorly performing clas-
sifier (2). A marker that is a strong predictor of risk after
controlling for other risk factors often adds little to them in
terms of improving classification performance.

In this paper, we present a new graphic, the “predictive-
ness curve,” which combines concepts from both risk mod-
eling and population performance approaches to analysis. In
particular, it is useful for assessing the fit of a risk model and
the clinical utility of the model when applied to the popu-
lation. We also extend the plot to simultaneously evaluate
the risks associated with a marker and the marker’s perfor-
mance as a classifier. This integrated approach provides
a more complete and comprehensive analysis than current
practice.

DATA FOR ILLUSTRATION

We illustrate this new approach with data from the re-
cently reported Prostate Cancer Prevention Trial (3). A total
of 5,519 men on the placebo arm of the study underwent
prostate biopsy and had at least two prostate-specific antigen
(PSA) measurements in the 3 years prior to biopsy. Along
with PSA and PSA change over time, data on family history
of prostate cancer, results of digital rectal examination, age,
ethnicity, and prior biopsy were used to model the risk of
finding prostate cancer and the risk of high-grade disease
(Gleason score of >7) at the time of prostate biopsy. Be-
cause the data are used only for illustrating a statistical
method, in the interests of being relatively brief, we restrict
the analysis to high-grade disease, although a similar ap-
proach could be used for all prostate cancer. Of the 5,519
men, 4.7 percent ultimately were found to have high-grade
disease. Table 1 shows the results of the logistic regression
analysis. Procedures for selecting variables and fitting mod-
els are as described by Thompson et al. (3), who found that,
for the diagnosis of high-grade disease, PSA, digital rectal
examination, age, and prior negative biopsy appeared to be
predictive of risk.

THE PREDICTIVENESS CURVE

We can calculate an individual’s estimated risk given data
on his risk factors by use of the fitted risk model. For the
prostate cancer example, the calculation (3) is as follows:

Risk of high-grade disease =exp(Y)/{1+exp(Y)}

where DRE is digital rectal examination, and

Y =—-5.94+1.30[log(PSA)] 4 0.03(age) +0.99
X (DRE positive) — 0.37(prior biopsy).

This risk calculator of Thompson et al. (3) is available online
at  http://www.compass.fhcrc.org/edrnnci/bin/calculator/
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TABLE 1. Logistic regression analysis* of risk for high-grade
disease, Prostate Cancer Prevention Trial, 1993-2003

Factor Log odds ratio p valuet
Log(PSA%) 1.30 <0.001
Age (years) 0.03 0.02
DRE# 0.99 <0.001
Prior biopsy —0.37 0.04
Constant —5.94

* Analysis as reported by Thompson et al. (3).
T p values are based on two-sided Wald tests.
¥ PSA, prostate-specific antigen; DRE, digital rectal examination.

main.asp. We calculated the estimated risk for each of the
individuals in the Prostate Cancer Prevention Trial. The
predictiveness curve in figure 1 shows the distribution of
risks. To create the curve, we ordered the risks from lowest
to highest and plotted their values. We see that, at 90 percent
on the x-axis, the risk value is 0.104. This indicates that, on
the basis of the predictors in the model, 90 percent of sub-
jects in the cohort have calculated risks below 0.104 and
only 10 percent have risks at or above 0.104.

Another way of using the graph is to start at a risk value
on the y-axis and to read the corresponding percent on the
x-axis. For example, with “risk = 0.20,” we see that the
percent is 97.8 percent. That is, we estimate that 2.2 percent
of the subjects in the cohort have estimated risks at or above
0.20. With “risk = 0.02,” the percent is 39.0 percent, in-
dicating that 39.0 percent of the subjects in the cohort have
risks below 0.02.
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FIGURE 1. Predictiveness curve for the risk model shown in table 1
that includes prostate-specific antigen, age, digital rectal examination,
and prior biopsy as risk factors for high-grade prostate cancer,
Prostate Cancer Prevention Trial, 1993-2003. Shown on right are
the risk thresholds of >0.20 for high risk and <0.02 for low risk. Open
circles display observed proportions of high-grade cancers within risk
deciles.
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What does the graph offer that is not summarized in
table 1? It shows the range and distribution of estimated
risk levels associated with the model when it is applied to
the population from which the cohort was drawn. Consider
that an individual wants to use his calculated risk in de-
ciding whether or not to have a biopsy. The decision is
more straightforward if his estimated risk of disease is
close to 0 or 1. If his calculated risk is in an equivocal
range, it is not helpful. Suppose, for illustration, that
20 percent risk of high-grade disease is sufficiently high
to recommend a biopsy and that 2 percent risk is suffi-
ciently low to decide against biopsy. Individuals whose
risks are calculated in the range 0.02—0.20 are unsure about
whether or not they should have a biopsy obtained.
(A formal cost-benefit analysis that incorporates their risk
of disease might be helpful, although specifying costs and
benefits is always difficult.) A risk model will be most
useful for individual decision making if calculated risks
of having high-grade disease tend to exceed 20 percent
or be less than 2 percent. We see from figure 1, however,
that the prostate cancer risk model leaves the majority of
men, 58.8 percent, in the indecisive risk region. Alternative
thresholds might be chosen for defining high and low risk.
If it is reasonable to assume that a man with a <5 percent
risk of high-grade disease may defer further evaluation
while a man with a >10 percent risk would prefer an eval-
uation, the corresponding indecisive risk region would
contain only 25 percent of the population. It is important
to keep in mind, however, that individuals typically do not
distinguish between minor variations in risk, so we prefer
to use the more extreme definitions of low and high risk in
our illustrations.

A risk calculator should be derived from a risk model that
fits the data well. The standard approach to evaluating model
fit, that is, calibration, is to categorize subjects according to
deciles (or other quantiles) of risk according to the model
and to compare average predicted risk with the observed
proportion of events in each category. The Hosmer-
Lemeshow statistic (4) uses this approach to formally test
for goodness of fit. Interestingly, the predictiveness curve
offers a graphical approach to assessing goodness of fit in
this sense. At the midpoint of each decile of risk in figure 1,
we superimpose the corresponding observed proportions of
high-grade cancer. Visually, one can compare these ob-
served proportions with the predictiveness curve, noting that
the curve averaged over the decile category is the average
model predicted risk. An equivalent display often seen in
practice is to plot the observed proportion versus the average
risk (5, section 14.6). For the model in table 1, the Hosmer-
Lemeshow statistic is 9.11 (p = 0.33), indicating that it fits
the data rather well. However, the graphical display offers
a more complete description of how observed and modeled
risks compare. It shows the components of the test statistic.
In addition, when there is particular interest in model fit in
low- and high-risk groups, figure 1 allows one to focus
accordingly. We obtained similar results when the data were
split into halves, with the model fit on one half and assessed
with the Hosmer-Lemeshow statistic and corresponding
graphic on the second half. This avoids issues with fitting
a model and assessing its fit with the same data.
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FIGURE 2. Predictiveness curves for prostate-specific antigen
(PSA) alone, PSA and other factors, and the simulated marker
(SIM), Prostate Cancer Prevention Trial, 1993—-2003.

In viewing the predictiveness curve, one must also be
cognizant of sampling variability. Neither the risks nor the
distributions of predictors in the population are known with
certainty, and both components enter into the predictiveness
curve. This can be addressed by using bootstrapping tech-
niques (6) to calculate confidence intervals and p values. We
used the simple bootstrap, resampling 5,519 subjects with
replacement from the original data set, fitting the risk model
with the four selected covariates and calculating fitted risks
for resampled subjects. When confidence intervals were cal-
culated, a confidence level of 95 percent was used through-
out. As an example, we noted that only 10 percent of the
subjects have risks in excess of 0.104 (95 percent confidence
interval (CI): 0.090, 0.120), indicating that the risk quantile
is estimated rather precisely, at least assuming correct form
for the risk model. Similarly, the estimates and confidence
intervals for the proportions of subjects with risks at or
above 0.20 and below 0.02 are 0.022 (95 percent CI:
0.014, 0.034) and 0.390 (95 percent CIL: 0.318, 0.467),
respectively.

Different risk models can be compared through their pre-
dictiveness curves. In figure 2, we see that the predictiveness
curve for PSA alone is almost identical to that of the more
comprehensive model that includes the additional risk fac-
tors of age, prior biopsy, and digital rectal examination.
Both models calculate risks at or less than the 0.02 low-risk
threshold for 36 percent and 39 percent of the population,
respectively. Although the p value for this comparison, p =
0.05, is marginally statistically significant, the magnitude of
the difference, 3 percent, is clinically insignificant. At the
high-risk end of the scale, the PSA model puts 1.2 percent
(95 percent CI: 0.7, 2.2) of subjects at or above the 0.20 risk
level, while the more comprehensive model puts 2.2 percent
(95 percent CI: 1.4, 3.4) of subjects in the high-risk range
(p = 0.007). For comparison, we also include a simulated
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marker with much better performance. The simulated
marker identifies 70.4 percent (95 percent CI: 66.7, 73.9)
of the subjects as low risk and 6.3 percent (95 percent CI:
5.5, 7.2) as high risk, but it leaves 23.3 percent with calcu-
lated risks in the equivocal range between 0.02 and 0.20.
This marker was simulated as a standard normal random
variable for controls and a normal (mean = 2, standard de-
viation = 1) random variable for cases.

Another approach to comparing risk models is with the
R-squared statistic, the proportion of explained variation
generalized from linear to logistic regression (7). The values
0.053, 0.066, and 0.310 for PSA alone, for PSA and other
factors, and for the simulated marker, respectively, corrob-
orate the results depicted in the predictiveness curves. How-
ever, the interpretation of the R-squared value as the
proportion of the variance in disease explained by the model
is not very intuitive. Interestingly, R* can be calculated as
a summary index from the predictiveness curve:

1
R = /0 (pred(v) — p)*dv/p(1 - p),

where p = disease prevalence in the study population, and
pred(v) is the value of the risk at the vth percentile. The
denominator term in R? is a standardization factor leading
to values in the range from O (useless prediction) to 1 (per-
fect prediction). We find the display of the predictiveness
curve more clinically useful than simply reporting its R>
summary index.

In our plots, we include a horizontal line located at the
risk level equal to the prevalence. This corresponds to the
predictiveness curve for a completely uninformative risk
model, one that assigns all subjects equal risk. It serves as
a reference curve. Moreover, mathematically, the positive
area above the horizontal line but below the predictiveness
curve must equal the negative area below the horizontal line
but above the predictiveness curve. Better markers will
show larger positive and negative areas, and we find that
the horizontal line is a helpful visual aid.

CLASSIFICATION BASED ON RISK

Clinical decision criteria are often of the form ‘“‘marker >
threshold.” For example, the criterion “PSA > 4.0 ng/ml”
has been used to recommend biopsy. However, decision
criteria might be better formulated in terms of risk. For
example, the criterion “risk > 0.20” could be used to rec-
ommend biopsy. Criteria formulated in terms of risk are
natural and intuitive. In addition, they are statistically opti-
mal in the sense that they minimize false positive and false
negative error rates (8). In particular, with PSA, age, digital
rectal examination, and prior biopsy as predictors, existing
decision theory based on the Neyman-Pearson lemma (9)
states that the best trade-off between true positive fraction
(sensitivity) and false positive fraction (1 — specificity) in
the population as a whole is achieved with criteria of the
form “‘risk > threshold.”

The performance of decision rules based on a risk model
can be calculated from the model’s predictiveness curve. We
illustrate this in figure 3. For example, the positive predic-
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FIGURE 3. Schematic diagram showing how classifier performance
parameters relate to the predictiveness curve. Positive predictive
value = dark/shade dark + intermediate; negative predictive value =
white area/white + light shade; true positive fraction = dark shade/
dashed box; false positive fraction = intermediate shade/1 — dashed
box.

tive value of the criterion ““risk > threshold” is the propor-
tion of the dark area in the shaded rectangle that lies under
the curve. The true positive fraction corresponding to this
criterion is the same dark area under the curve divided by
the prevalence of disease. Although exact calculations will
be made directly from the data, approximate calculations
can be made by simply viewing the predictiveness curve.
The plot shown in figure 4A is a comprehensive summary
of the population performance of the risk model based on
the simulated marker. It allows one to assess decision crite-
ria from multiple points of view. For example, we see that,
by recommending biopsy for subjects with estimated risks at
or above 0.20, 6.3 percent (95 percent CI: 5.5, 7.2) of the
population proceed to biopsy and 60 percent (95 percent
CI: 53.2, 65.6) of subjects with high-grade disease are de-
tected, while 3.7 percent (95 percent CI: 3.2, 4.3) of subjects
without high-grade disease are unnecessarily biopsied.
These calculations do not depend on correctness of the risk
model and, indeed, it is possible that, in some applications,
one might achieve adequate classification based on esti-
mated risk even if the model suffers from some degree of
lack of fit. The choice of risk threshold for classification
might be dictated by controlling one or more of the perfor-
mance measures. Maintaining the false positive fraction at
a low level is paramount in primary screening, while a high
true positive fraction is often crucial in diagnostic settings.
Yet, the corresponding risk threshold will also be an impor-
tant aspect to consider in order to ensure that decisions are
satisfying to individuals. To illustrate, in figure 4B, if we
choose the positivity criterion on the basis of a true positive
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FIGURE 4. The integrated predictiveness and classification plot for the simulated marker using two criteria for defining a positive biomarker result,
Prostate Cancer Prevention Trial, 1993—-2003. In part A, the criterion is risk >0.20; in part B, the criterion is true positive fraction (TPF) = 0.95. FPF,

false positive fraction.

fraction (TPF) = 0.95, for example, the corresponding risk
threshold is 0.012 (95 percent CI: 0.005, 0.026). Sending
individuals for biopsy when their risks are less than 2.6
percent may be inappropriate. In addition, we see that the
corresponding false positive fraction (FPF) is unacceptably
high: FPF = 0.35 (95 percent CI: 0.23, 0.49).

The ROC curve for a risk model plots the TPF associated
with a risk threshold criterion versus the corresponding
FPF for all possible threshold criteria. Curves are shown
in figure 5 for the three risk models considered in figure 2.
The problem with the ROC curve is that typically the risk
thresholds are not displayed. If one wanted to compare the
population performances of the different models using the
risk criterion “risk > 0.20,” for example, this cannot be
done using standard ROC curves. One cannot locate on an
ROC curve the point that corresponds to this criterion be-
cause it displays only TPF and FPF but not risk. We show
the points in figure 5 that correspond to the risk threshold at
or above 0.20 and note that they are in different horizontal
and vertical locations on the three ROC curves. For evalu-
ating risk prediction markers or models, where decision
criteria may be based on individual-level risk, we therefore
feel that the integrated plot that aligns the models according
to risk thresholds offers a more pertinent display than the
ROC curve that aligns models according to TPF or FPF.
Similar criticisms apply to the Lorenz curve (10, 11) that
plots the TPF associated with a risk threshold against the
population proportion exceeding that threshold. With note
taken that the latter is a weighted average of TPF and FPF,

TPF
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0- ——=5sIM
T T
0 1
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FIGURE 5. Receiver operating characteristic (ROC) curves for risk
models based on prostate-specific antigen (PSA) alone, PSA and
other risk factors, and the simulated marker (SIM), Prostate Cancer
Prevention Trial, 1993—2003. These ROC curves correspond to the
predictiveness curves in figure 2. False positive fraction (FPF) and
true positive fraction (TPF) points corresponding to the high-risk
designation (risk: >0.20) are displayed for each model.
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namely, p X TPF + (1 — p) X FPF, the Lorenz curve shows
information that is equivalent to the TPF versus FPF plot of
the ROC curve, so it suffers the same defects. There is no
information about absolute risk on the Lorenz curve.

DISCUSSION

The fitting of risk models to biomarker and risk factor
data is a valuable exercise. However, the usefulness of the
model as applied to the population is rarely evaluated. We
suggest for this purpose the predictiveness curve, a display
of the risk distribution revealed by the biomarkers and risk
factors in the population. A desirable model performs a tri-
age process, placing most individuals at high- or low-risk
values, where decisions are more easily made. In developing
a biomarker, we need to define a reasonable threshold or
range of thresholds for high (and low) risk. The threshold
depends on the clinical context and involves weighing the
expected costs against benefits associated with a high-risk
designation. This may be done with formal decision analy-
sis, or perhaps more often it is done informally. Given such,
the predictiveness curve shows the capacity of the marker to
identify meaningful variations in risk. By simultaneously
displaying predictiveness and classification performance
with the integrated plot, we believe that biomarker research-
ers are better equipped to understand the potential utility of
a risk model applied in the population. This practical goal
motivated our research.

We noted that the curve can also be helpful in evaluating
the fit of a risk model, in the same sense as the standard
Hosmer-Lemeshow goodness-of-fit statistic. However, group-
ing individuals according to values of estimated risks is not
equivalent to grouping individuals according to their predic-
tors. Therefore, it has been noted that the Hosmer-Lemeshow
approach can miss detecting lack of fit when individuals with
different true risks based on their covariate patterns are
grouped together by a model that erroneously assigns them
similar risk values. Alternative omnibus approaches have
been proposed (12—-14). In addition, improvements in good-
ness of fit could be examined in relation to improved classi-
fication with the integrated plots. For the model in table 1,
investigators compared its fit with models that included inter-
actions and variable transformations and found no evidence of
improved fit with these additional terms (3).

The methods presented in this paper are related to meth-
ods used informally and occasionally in the literature. For
example, Goldman et al. (15) and, more recently, Cook et al.
(16), compare risk models by evaluating the numbers of
subjects whose risks exceed a therapeutic risk threshold.
Predictiveness curves provide for such comparisons across
all possible risk thresholds. In addition, new statistical tech-
niques will now provide methods for making formal statis-
tical inference (17, 18). We believe that, in addition to
calculating the proportion of subjects exceeding a risk
threshold, it is important to simultaneously evaluate the
numbers of subjects that correctly and incorrectly exceed
the threshold (19, 20). The TPF and FPF values in the in-
tegrated plot show exactly these entities.

We note that a histogram of population risk values is
essentially equivalent to the predictiveness curve, and these

Am J Epidemiol 2008;167:362—368

have also appeared as informal displays in the literature.
However, the histogram has the drawback that it requires
defining intervals (or bins) for risk values, and the curve has
the advantage that it numerically displays the quantities of
interest, that is, the proportions of subjects exceeding risk
thresholds.

One must always be cautious to interpret a risk model and
its predictiveness curve in the context of the population that
gave rise to the data. Strictly speaking, the “population”
refers to a population for which the available cohort is a rep-
resentative subsample. As noted by Thompson et al. (3),
Prostate Cancer Prevention Trial participants may not reflect
the general US population. Subjects in the Prostate Cancer
Prevention Trial were participants in a clinical trial. They
may differ from the general population because of eligibility
criteria, characteristics related to their self-selection for the
study, and their care during the course of the study. There-
fore, their risk model may not apply with complete fidelity
to the general population. We use the data here simply to
illustrate statistical methodology and, for that purpose, the
data serve well. Nevertheless, they raise questions about risk
assessment using research cohorts in general and clinical
trial cohorts in particular. Although they may provide a use-
ful starting point for marker evaluation and marker compar-
ison, ultimately risk models should be calculated on cohorts
representative of the target population.

The analyses we applied to the Prostate Cancer Preven-
tion Trial data showed that additional risk factors do not add
substantially to the predictiveness of PSA alone, in that the
fraction of subjects in the equivocal risk range is not appre-
ciably decreased. A risk factor can have a large effect on
risk, but if it is rare in the population, it cannot substantially
influence population risk prediction. In the Prostate Cancer
Prevention Trial, few subjects have risk factor levels that
substantially change their risk calculated on the basis of
PSA alone. For only 72 subjects did their risk change from
<0.2 to >0.2 and, not surprisingly, a positive digital rectal
examination accounted for most of these (92 percent). Nev-
ertheless, the fact that the risk model has limitations on
a population level does not mean that it won’t contribute
in a meaningful way to the biopsy decision-making process
of some individuals, which was the specified purpose of
developing the risk model (3).

The predictiveness curve is easy to calculate once a risk
model has been fitted. We have developed procedures for
constructing confidence intervals and for comparing points
on two curves under cross-sectional cohort designs (17).
Bootstrap techniques were applied in the current paper.
For case-control study designs, it is possible to estimate risk
from a fitted logistic regression if the disease prevalence is
known. Corresponding procedures to estimate the predic-
tiveness curve from case-control data are currently under
development. For settings with an outcome variable that is
a time to an event, such as disease or death, one can define
risk as a function of time, that is, the probability of an event
in a time interval (0, 7). Predictiveness curves would be
plotted for different time intervals.

Use of the same data set to fit a risk model and to assess its
performance can lead to optimistic estimates of model per-
formance. This is an issue particularly when many
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predictors are involved. Cross-validation or bootstrapping
can be applied in these settings to correct for this bias. In
our analysis of the Prostate Cancer Prevention Trial data, the
model that included other risk factors in addition to PSA
showed minimal improvement over PSA alone with uncor-
rected predictiveness curves, so correcting for optimistic
bias was unnecessary. The conclusion about minimal im-
provement would remain the same.

A bona fide risk calculator must correctly and precisely
calculate an individual’s risk. Fitting an adequate risk model
for individual risk assessment is an ambitious statistical task,
more ambitious than estimating an ROC curve, for example.
The former is akin to estimating a probability density, while
the latter is akin to estimating a cumulative distribution func-
tion. Therefore, with small data sets where risk modeling is
not feasible, one might proceed to simply evaluating the usual
classification performance measures such as the ROC curve.
With larger data sets, classification performance measures
should also be assessed but perhaps in conjunction with the
predictiveness curve in order to integrate the risk modeling
and classification approaches to data analysis.
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