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Abstract. The receiver operating characteristic (ROC) curve displays the capacity
of a marker or diagnostic test to discriminate between two groups of subjects, cases
versus controls. We present a comprehensive suite of Stata commands for perform-
ing ROC analysis. Nonparametric, semiparametric, and parametric estimators are
calculated. Comparisons between curves are based on the area or partial area
under the ROC curve. Alternatively, pointwise comparisons between ROC curves
or inverse ROC curves can be made. We describe options to adjust these analyses
for covariates and to perform ROC regression in a companion article. We use a
unified framework by representing the ROC curve as the distribution of the marker
in cases where we have standardized it to the control reference distribution.
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1 Introduction

1.1 Definition of the ROC curve

The receiver operating characteristic (ROC) curve displays the discriminatory capacity
of a marker or test. Suppose D = 0 denotes controls and D = 1 denotes cases, and
assume without loss of generality that larger values of Y are more indicative of a subject
being a case. The ROC curve for marker Y is a plot of the true positive rate TPR(c) =
P (Y ≥ c |D = 1) versus the false positive rate FPR(c) = P (Y ≥ c |D = 0) for the
threshold criterion Y ≥ c, where c varies from −∞ to ∞. It is a monotone increasing
function in the unit square tied down at the boundary points (0, 0) and (1, 1). A perfect
classifier has an ROC curve that rises steeply along the left axis to the point (FPR = 0,
TPR = 1), while an uninformative marker has an ROC curve that is the diagonal 45◦ line.
Key attributes of the ROC curve are that 1) it does not depend on the raw measurement
units for Y (it is invariant to monotone increasing transformations of Y ); 2) it provides
a common scale for comparing performances of different markers; and 3) it displays the
range of possible performance levels that can be achieved by varying the threshold.
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2 Estimation and comparison of ROC curves

Figure 1 shows empirical ROC curves for two pancreatic cancer biomarkers (Wie-
and et al. 1989). The data can be downloaded from the Diagnostic and Biomarkers
Statistical Center web site (http://www.fhcrc.org/labs/pepe/dabs), or it can be loaded
directly into a Stata session:

. use http://labs.fhcrc.org/pepe/book/data/wiedat2b

. roccurve d y1 y2, roc(.2) level(90)

0

1

TPR

0 1
FPR

CA 19−9
CA 125

marker

markers: CA 19−9, CA 125

Figure 1. Nonparametric ROC curves for two markers of pancreatic cancer. Ninety
percent confidence intervals for ROC(0.2) are displayed.

1.2 Representation in terms of percentile values (PVs)

Let F denote the left-continuous cumulative distribution of Y in the control population,
F (y) = P (Y < y |D = 0). We define a standardization of Y for the ith subject, with a
marker value of Yi.

PVi = F (Yi)

is the proportion of the control population with values below Yi. In lay terms, PVi×100
is the percentile of Yi when the controls are considered the reference population against
which to standardize the marker. We next show that the ROC curve can be written
as the distribution of these standardized marker measurements (Pepe and Cai 2004;
Pepe and Longton 2005). This identity suggests simple algorithms for implementing
standard ROC methods and also gives rise to some new methods (Huang and Pepe
Forthcoming).
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Result 1

The ROC curve is the cumulative distribution of 1 − PVD,

ROC(f) = P (1 − PVD ≤ f)

where PVD denotes the standardized marker for a case.

Proof

Let y be a marker threshold and note that the corresponding FPR, f , satisfies F (y) =
1 − f . Let YD denote the marker value from a random case. If the control distribution
of Y is continuous, then F is monotone strictly increasing, and we see that

ROC(f) ≡ P (YD ≥ y)
= P{F (YD) ≥ F (y)}
= P (PVD ≥ 1 − f) = P (1 − PVD ≤ f)

If F has discrete mass points, then this proof also holds when y is a mass point. If y
is not a mass point but (y−, y+) are the closest values, y− < y < y+, then f = 1−F (y+)
and ROC(f) = P (YD > y−) = P{F (YD) ≥ F (y+)} = P{F (YD) ≥ 1 − f}.

2 Estimating the ROC curve

The representation in result 1 suggests that the ROC curve estimation can be accom-
plished in two steps:

1. Estimate the reference cumulative distribution function (c.d.f.), F , using controls;
calculate corresponding standardized marker values for cases.

2. Estimate the cumulative distribution of the standardized marker values for cases.

2.1 The control reference distribution

The empirical estimator of the control reference distribution can be used. Alternatively,
a parametric model can be assumed. The roccurve command, which we introduce
in section 4, allows one to use either the empirical method or a normal parametric
distribution model.

Marker values for cases are standardized with the estimator F̂ . Write the standard-
ized values as

P̂VDi = F̂ (YDi), i = 1, . . . , nD

where nD is the number of case observations.



4 Estimation and comparison of ROC curves

2.2 The c.d.f. of standardized markers

The next step is to estimate the c.d.f. of 1 − PVD, denoted by H. The empirical c.d.f.
is a nonparametric option provided by roccurve. A parametric model can be used
instead. The parametric model has the advantage of providing a smooth ROC curve
instead of a step function. The parametric forms allowed by roccurve are

H(f) = g{α0 + α1g
−1(f)}

where g is a c.d.f. In this form, the domain for H is restricted to (0, 1). As a special
case, when g = Φ, the standard normal distribution, the corresponding ROC curve is
binormal (Dorfman and Alf 1969):

ROC(f) = H(f) = Φ{α0 + α1Φ−1(f)}
The roccurve command also allows the logistic form, g(·) = exp(·)/{1+exp(·)}, which
gives rise to a bilogistic ROC curve (Ogilvie and Creelman 1968).

To fit these parametric models, a set of discrete points on the FPR axis is chosen,
{f1, . . . , fnp

}. For each case i and for each fk, a record is created that includes the binary
variable Uki = I

(1−dPVDi≤fk)
and the covariate g−1(fk). Fitting a binary regression

model with the link function, g; the outcome variable, U ; and the covariate, g−1(f)
yields estimates of (α0, α1) (Alonzo and Pepe 2002).

In some applications, one may want to model only the ROC curve over a restricted
FPR range, (a, b) ⊂ (0, 1), in which case the FPR points {f1, . . . , fnp

} should span the
interval (a, b).

In figure 2, we display four different estimators applied to data on the pancreatic
cancer biomarker CA-125. The first estimator is the standard empirical ROC curve that
results from standardizing with the left-continuous empirical control reference distri-
bution and applying the empirical c.d.f. for H. This is precisely the same as the em-
pirical estimator that is provided by Stata’s roctab command. The second estimator
is the semiparametric binormal estimator that calculates the standardized values with
the empirical control distribution for Y but uses a probit link function for g. This
rank-invariant semiparametric estimator requires less computation than the binormal
estimator provided by Stata’s rocfit command and appears to have similar efficiency
(Alonzo and Pepe 2002). The third estimator assumes that the marker is normally
distributed in controls and is not rank invariant. It calculates standardized values as

PVDi = Φ{(YDi − mean)/sd}
where mean and sd are the sample mean and the standard deviation, respectively, of the
control observations. The fourth estimator is fully parametric. In addition to modeling
the control reference distribution as normal, it assumes the ROC curve is binormal. The
two assumptions taken together are equivalent to assuming that markers for both cases
and controls are normally distributed. In practice, the rank-invariant estimators are
more popular. Parametric models for the reference distribution have a more promi-
nent role in settings where covariates affect marker distributions, and covariate-specific
distributions are difficult to estimate empirically (Janes, Longton, and Pepe 2009).
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Figure 2. ROC curves for CA-125 as a marker of pancreatic cancer

We created the graphs in figure 2 with the following commands (your graphs will
look slightly different because we do not show all the options here):

. use http://labs.fhcrc.org/pepe/book/data/wiedat2b

. roccurve d y2, pvcmeth(empirical) rocmeth(nonparametric)

. roccurve d y2, pvcmeth(empirical) rocmeth(parametric) link(probit)

. roccurve d y2, pvcmeth(normal) rocmeth(nonparametric)

. roccurve d y2, pvcmeth(normal) rocmeth(parametric)

(Continued on next page)
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3 Sampling variability

We use bootstrap resampling to calculate pointwise confidence intervals (CIs) for the
ROC curve, ROC(f), and for its inverse, ROC−1(t). In particular, if f is the FPR, the
(1−α/2) and α/2 quantiles of the bootstrap distribution of R̂OC(f) are delivered as the
(1 − α) confidence limits.

The resampling must reflect the study design. If selection to the study was outcome
dependent (that is, if a case–control design was used, as is common in early phase studies
[Pepe et al. 2001]), then resampling is done separately within case and control strata.
On the other hand, if subjects were enrolled without regard to their outcome status,
resampling is done accordingly from the entire dataset. In addition, if observations
are clustered (for example, if subjects contribute several observations to ROC curve
estimation), the cluster() option can be used to identify resampling clusters.

4 The roccurve command

4.1 Syntax

The syntax for the roccurve command is

roccurve disease var test varlist
[
if
] [

in
] [

, rocmeth(method) link(function)

interval(a b np) nograph roc(f) rocinv(t) offset(#) connect options

twoway options pvcmeth(method) tiecorr adjcov(varlist) adjmodel(model)

nsamp(#) noccsamp nostsamp cluster(varlist) level(#) genrocvars genpcv

replace
]

where disease var is the name of the binary-outcome variable, D = 1 for a case and
D = 0 for a control, and test varlist comprises the names of markers or tests for which
ROC curves are to be calculated.

4.2 Options

ROC calculation

rocmeth(method) specifies whether nonparametric (empirical ROC, the default) or
parametric ROCs are to be calculated.

link(function) specifies the ROC generalized linear models link function and is valid
only if rocmeth(parametric) is specified. function can be one of the following:

probit, the default, corresponds to the binormal ROC model. That is,
Φ−1{ROC(f)} = intercept+slope×Φ−1(f), where Φ is the standard normal c.d.f.
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logit corresponds to the bilogistic ROC model. That is, logit{ROC(f)} = intercept+
slope × logit(f).

interval(a b np) specifies the interval (a, b) and the number of points (np) in the
interval over which the parametric ROC model is to be fit. The program uses equally
spaced points in the interval. The default is interval(0 1 10).

Graph

nograph suppresses the ROC plot when only returned numerical results are desired.

roc(f) indicates that bootstrap percentile-based CIs for the ROC at specified FPR = f
are to be included on the plot. The argument must be between 0 and 1. Only one
of the roc(f) or rocinv(t) options can be specified.

rocinv(t) indicates that bootstrap percentile-based CIs for the inverse ROC at specified
TPR = t are to be included on the plot. The argument must be between 0 and 1.
Only one of the roc(f) or rocinv(t) options can be specified.

offset(#) specifies the x- or y-axis offset from f or t for the placement of second and
subsequent CIs for ROC(f) or ROC−1(t) to avoid overlap of interval bars for different
markers. The argument must be between 0 and 0.02; the default is offset(0.006).

connect options, the current scheme defaults for ROC connecting line color, pattern, and
width, can be overridden with the lcolor(colorstyle), lpattern(linepatternstyle),
and lwidth(linewidthstyle) options; see [G] connect options.

twoway options include various graph options that override default axis options, titles,
and overall graph appearance; see [G] twoway options. Exceptions include
marker options and the by() option.

The default region options (see [G] region options), xsize(#) and ysize(#), are
7 and 5, respectively. These can be overridden. If only one is specified, the other
will be calculated to maintain a 7×5 graph-region ratio. Specifying both xsize(#)
and ysize(#) at a different ratio is allowed, but this can result in the separation
of plot axes from the ROC plot because of the square plot aspect-ratio constraint.

Standardization method

pvcmeth(method) specifies how the percentile values (PVs) are to be calculated. method
can be one of the following:

empirical, the default, uses the empirical distribution of the test measure among
controls (D = 0) as the reference distribution for the calculation of case PVs.
The PV for the case measure yi is the proportion of control measures YD < yi.

normal models the test measure among controls with a normal distribution. The PV

for the case measure yi is the standard normal c.d.f. of (yi − mean)/sd, where
the mean and the standard deviation are calculated by using the control sample.
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tiecorr indicates that a correction for ties between case and control values is included
in the empirical PV calculation. The correction is important only in calculating
summary indices, such as the area under the ROC curve. The tie-corrected PV for
a case with the marker value yi is the proportion of control values YD < yi plus
one half the proportion of control values YD = yi, where YD denotes controls. By
default, the PV calculation includes only the first term, i.e., the proportion of control
values YD < yi. This option applies only to the empirical PV calculation method.

Covariate adjustment

adjcov(varlist) specifies the variables to be included in the adjustment.

adjmodel(model) specifies how the covariate adjustment is to be done. model can be
one of the following:

stratified PVs are calculated separately for each stratum defined by varlist in
adjcov(). This is the default if adjmodel() is not specified and adjcov() is.
Each case-containing stratum must include at least two controls. Strata that do
not include cases are excluded from calculations.

linear fits a linear regression of the marker distribution on the adjustment covariates
among controls. Standardized residuals based on this fitted linear model are used
in place of the marker values for cases and controls.

Sampling variability

These options are relevant only if either the roc(f) or the rocinv(t) option is specified.

nsamp(#) specifies the number of bootstrap samples to be drawn for estimating CIs.
The default is nsamp(1000).

noccsamp specifies that bootstrap samples be drawn from the combined sample rather
than sampling separately from cases and controls; case–control sampling is the de-
fault.

nostsamp draws bootstrap samples without respect to covariate strata. By default,
samples are drawn from within covariate strata when stratified covariate adjustment
is requested via the adjcov() and adjmodel() options.

cluster(varlist) specifies variables identifying bootstrap resampling clusters. See the
cluster() option of the bootstrap command ([R] bootstrap).

level(#) specifies the confidence level for CIs as a percentage. The default is level(95)
or as set by set level.
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New variable

These are options to create new variables.

genrocvars generates new pairs of variables, fpr# and tpr#, for each marker in
test varlist, with ROC coordinates for corresponding marker values. The empiri-
cal ROC curve, empirical rocmeth(), results from connecting the points as a right-
continuous step function. New variable names are numbered (#) according to the
marker variable order in test varlist.

genpcv generates variables, pcv#, to hold PVs for each marker in test varlist. New
variable numbers (#) correspond to the marker variable order in test varlist.

replace requests that the existing fpr#, tpr#, or pcv# variables be overwritten by
genrocvars or genpcv.

Options to adjust the ROC curve estimates for covariates are described in more detail
in another article in this issue (Janes, Longton, and Pepe 2009).

4.3 Saved results

Confidence limits for roc(f) or rocinv(t) and parameters for the ROC generalized linear
models parametric curve are saved in r() when the corresponding options are specified:

Matrices
r(ROC ci) n × 3 matrix of roc(f) or rocinv(t) estimates and confidence limits returned

when either option is specified. Columns correspond to the point estimate
and the lower and upper confidence bounds. Rows correspond to the marker
variables included in test varlist.

r(BNParm) n × 2 matrix of binormal or bilogistic curve parameter estimates when
rocmeth(parametric) is specified. Columns correspond to α0 and α1

parameters. Rows correspond to markers.

5 Summary indices

5.1 Area and partial area

Measures derived from the ROC curve are used to summarize discriminatory accuracy.
More importantly, they serve as the basis for test statistics with which to compare ROC

curves. The most popular index is the area under the ROC curve (AUC), also known as
the c-index or probability of correct ordering. AUC = Prob(YD > YN ) + 0.5Prob(YD =
YN ), where (YD, YN ) are a random pair of case and control marker values. We and
others (Pepe 2003, 78; Cook 2007) have argued against using the AUC as a key summary
measure because it is not clinically relevant. Subjects do not present clinically as pairs,
and typically the clinical problem is not to decide which member of such a pair is the
case.

For clinical applications, we prefer to use the ROC (or ROC−1) curve at a specific
point. Consider ROC(f). Given that one is willing to accept an FPR equal to f , what
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proportion of cases will be detected? This is relevant to clinical practice. However,
fixing one FPR of interest can be difficult. A compromise is the partial AUC (pAUC) that
integrates the ROC curve over a range of FPRs (McClish 1989; Thompson and Zucchini
1989). Because low FPRs are typically of interest, one can calculate the pAUC between
0 and the largest acceptable FPR, denoted by f0:

pAUC(f0) =
∫ f0

0

ROC(f)df

Interestingly, the classic nonparametric estimator of the AUC can be written as the
sample mean of the nonparametric case PVs (DeLong, DeLong, and Clarke-Pearson
1988; Hanley and Hajian-Tilaki 1997):

ÂUCe =
nD∑
i=1

P̂VDi/nD

When ties between case and control marker values are present, a correction for ties is
necessary in calculating the PVs so that ÂUCe corresponds to the trapezoidal empirical
AUC:

P̂V
c
Di = P̂VDi +

1
2
êi

where êi is the proportion of control marker values equal to YDi. The empirical estimator
of the pAUC (Dodd and Pepe 2003) can also be written as a sample mean:

̂pAUCe(f0) =
nD∑
i=1

max{P̂VDi − (1 − f0), 0}/nD (1)

again with the aforementioned tie correction for cases tied with controls.

By using a parametric model for the control reference distribution, the average of
parametric case percentiles yields another estimator of the AUC. Analogously, (1) with
parametric case percentiles provides a semiparametric pAUC estimate. Tie corrections
are not necessary when the estimated reference distribution is continuous.

In general, the calculation of parametric AUCs and pAUCs requires numerical inte-
gration, and these calculations are not output by our programs. The one exception is
that the binormal AUC has the closed-form expression Φ(α0/

√
1 + α2

1). Stata’s rocfit
command provides this expression after fitting a binormal curve; our programs do not.
We provide only estimates that are nonparametric with regard to the shape of the ROC

curve. This is also true for point estimates of ROC(f) and ROC−1(t) that are output by
the comproc command, which we introduce in section 6.

5.2 Comparisons

To compare ROC curves, we calculate a CI for the difference between ROC summary
indices. A Wald statistic, dividing the observed difference by its standard error, is
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compared with the standard normal distribution in order to report a p-value. CIs and
standard errors are again derived from the bootstrap distribution of the estimators. The
comproc command outputs results for one or more of the AUC, ROC(f), ROC−1(t), or
pAUC(f), where the fixed FPR = f or fixed TPR = t are specified by the data analyst.

6 The comproc command

6.1 Syntax

The syntax for the comproc command is

comproc disease var test var1
[
test var2

] [
if
] [

in
] [

, auc pauc(f) roc(f)

rocinv(t) pvcmeth(method) tiecorr adjcov(varlist) adjmodel(model)

nsamp(#) nobstrap noccsamp nostsamp cluster(varlist) resfile(filename)

replace level(#)
]

where disease var is the binary-outcome status variable, and test var1 and test var2 are
the markers. If only one marker is specified, summary indices are output for that marker
but no comparisons are made.

6.2 Options

Summary statistics

auc compares markers with respect to the AUC. This is the default if no summary
statistics are specified.

pauc(f) includes a comparison with respect to the pAUC for FPR < specified f. The
argument must be between 0 and 1. A tie correction is included in the PV calculation
if this option is included among the specified summary statistics and the empirical
PV calculation method is used.

roc(f) compares markers with respect to the ROC at the specified FPR = f. The argu-
ment must be between 0 and 1.

rocinv(t) compares markers with respect to the inverse ROC, ROC−1(t), at the specified
TPR = t. The argument must be between 0 and 1.

Standardization method

pvcmeth(method) specifies how the PVs are to be calculated. method can be one of the
following:

empirical, the default, uses the empirical distribution of the test measure among
controls (D = 0) as the reference distribution for the calculation of case PVs.
The PV for the case measure yi is the proportion of control measures YD < yi.
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normal models the test measure among controls with a normal distribution. The PV

for the case measure yi is the standard normal c.d.f. of (yi − mean)/sd, where
the mean and the standard deviation are calculated by using the control sample.

tiecorr indicates that a correction for ties between case and control values is included
in the empirical PV calculation. The correction is important only in calculating
summary indices, such as the AUC. The tie-corrected PV for a case with the marker
value yi is the proportion of control values YD < yi plus one half the proportion
of control values YD = yi. By default, the PV calculation includes only the first
term, i.e., the proportion of control values YD < yi. This option applies only to the
empirical PV calculation method.

Covariate adjustment

adjcov(varlist) specifies the variables to be included in the adjustment.

adjmodel(model) specifies how the covariate adjustment is to be done. model can be
one of the following:

stratified PVs are calculated separately for each stratum defined by varlist in
adjcov(). This is the default if adjmodel() is not specified and adjcov() is.
Each case-containing stratum must include at least two controls. Strata that do
not include cases are excluded from calculations.

linear fits a linear regression of the marker distribution on the adjustment covariates
among controls. Standardized residuals based on this fitted linear model are used
in place of the marker values for cases and controls.

Sampling variability

nsamp(#) specifies the number of bootstrap samples to be drawn for estimation of
standard errors and CIs. The default is nsamp(1000).

nobstrap omits bootstrap sampling and estimation of standard errors and CIs. If
nsamp() is specified, nobstrap will override it.

noccsamp specifies that bootstrap samples be drawn from the combined sample rather
than sampling separately from cases and controls; case–control sampling is the de-
fault.

nostsamp draws bootstrap samples without respect to covariate strata. By default,
samples are drawn from within covariate strata when stratified covariate adjustment
is requested via the adjcov() and adjmodel() options.

cluster(varlist) specifies variables identifying bootstrap resampling clusters. See the
cluster() option of the bootstrap command ([R] bootstrap).
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resfile(filename) creates a Stata file (a .dta file) with the bootstrap results for the
included statistics. bstat can be run on this file to view the bootstrap results again.

replace specifies that if the specified file already exists, then the existing file should be
overwritten.

level(#) specifies the confidence level for CIs as a percentage. The default is level(95)
or as set by set level.

6.3 Saved results

comproc saves the following r-class results, where stat is one or more of auc, pauc, roc,
or rocinv, corresponding to the requested summary statistics:

Scalars
r(stat1) statistic estimate for first marker
r(stat2) statistic estimate for second marker
r(statdelta) estimate difference, stat2–stat1
r(se stat1) bootstrap standard-error estimate for first marker statistic
r(se stat2) bootstrap standard-error estimate for second marker statistic
r(se statdelta) bootstrap standard-error estimate for the difference, stat2–stat1

In addition, many of the standard e-class bootstrap results left behind by bstat are
available after running comproc.

6.4 Example

The comproc command applied to the pancreatic-cancer marker data shown in figure 1
yielded the following results:

. set seed 8378923

. comproc d y1 y2, auc roc(0.2)

Comparison of test measures
test 1: CA 19-9
test 2: CA 125

percentile value calculation method: empirical
percentile value tie correction: no

bootstrap samples drawn
separately from cases and controls

# bootstrap samples: 1000

(Continued on next page)
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****************
AUC estimates and difference,

test 2 - test 1 (aucdelta)

Bootstrap results Number of obs = 141
Replications = 1000

Observed Bootstrap
Coef. Bias Std. Err. [95% Conf. Interval]

auc1 .86056644 -.0010577 .03067768 .8004393 .9206936 (N)
.7964053 .9174292 (P)
.7989107 .9185185 (BC)

auc2 .70413947 .0007451 .0471203 .6117854 .7964936 (N)
.6093682 .7955338 (P)
.6069717 .7921569 (BC)

aucdelta -.15642697 .0018028 .05788385 -.2698772 -.0429767 (N)
-.266122 -.0415033 (P)
-.2666667 -.0422658 (BC)

(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval

test of Ho: auc1 = auc2
z = -2.7 p = .0069

****************
ROC estimates and difference,

test 2 - test 1 (rocdelta)

ROC(f) @ f = .2

Bootstrap results Number of obs = 141
Replications = 1000

Observed Bootstrap
Coef. Bias Std. Err. [95% Conf. Interval]

roc1 .77777779 .0011778 .04836552 .6829831 .8725725 (N)
.6888889 .8777778 (P)

.7 .8888889 (BC)
roc2 .48888889 -.0091667 .13398627 .2262806 .7514971 (N)

.2222222 .7 (P)

.2333333 .7222222 (BC)
rocdelta -.2888889 -.0103444 .14291224 -.5689918 -.0087861 (N)

-.5777777 -.0444444 (P)
-.5777777 -.0333334 (BC)

(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval

test of Ho: roc1 = roc2
z = -2 p = .043

****************

The bootstrap result tables are generated by Stata’s estat bootstrap command.
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7 Remarks

Our programs rely on representing the ROC curve as the c.d.f. of the case marker values
after they are standardized to the control reference distribution. This representation
gives rise to simple algorithms for calculating standard nonparametric estimators of
the ROC curve, the AUC, and pAUC(f). The representation also provides alternative
estimators of the ROC and its summary indices that are semiparametric or fully para-
metric. In a companion article (Janes, Longton, and Pepe 2009) in this issue of the
Stata Journal, we describe methods for covariate adjustment and ROC regression. The
PV representation is particularly useful in these settings.

Applications to continuous data are our focus. Though the methods can be applied
to ordinal markers and diagnostic tests, some standard ROC methods for ordinal data are
not included in our routines. In particular, our algorithm for fitting the binormal ROC

model does not correspond to the Dorfman and Alf algorithm (Dorfman and Alf 1969)
for ordinal data. In addition, the AUC corresponding to a fitted binormal model is not
output. Instead, nonparametric AUC estimates are provided. We recommend Stata’s
roctab command for fitting binormal models and calculating corresponding AUCs with
ordinal data.

The Diagnostic and Biomarkers Statistical Center web site is a repository of infor-
mation for the statistical evaluation of diagnostic tests and biomarkers. Included on
the web site are datasets that can be used to gain familiarity with the methods and
software described in this article.
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